How to rewrite equation of hyperbola in standard formRewrite a west to east parabola in standard formStandard form of hyperbolaConic Section IntuitionWhat steps are involved to derive a functional expression for the revolving line of a cooling tower?Conic section General form to Standard form HyperbolaHyperbola Standard Form Denominator RelationshipHyperbola with Perpendicular AsymptotesRewrite hyperbola $Ax^2+Bxy+Dx+Ey+F=0$ into standard formHow to prove that the limit of this sequence is $400/pi$Can you multiply an integral by f(x)/f(x) where deg(f(x))>0?

Store Credit Card Information in Password Manager?

Can a College of Swords bard use a Blade Flourish option on an opportunity attack provoked by their own Dissonant Whispers spell?

Calculate sum of polynomial roots

Strong empirical falsification of quantum mechanics based on vacuum energy density

Does an advisor owe his/her student anything? Will an advisor keep a PhD student only out of pity?

Keeping a ball lost forever

How to hide some fields of struct in C?

Why is it that I can sometimes guess the next note?

How do apertures which seem too large to physically fit work?

Can a stoichiometric mixture of oxygen and methane exist as a liquid at standard pressure and some (low) temperature?

Why "had" in "[something] we would have made had we used [something]"?

Mixing PEX brands

Plot of a tornado-shaped surface

Creepy dinosaur pc game identification

Electoral considerations aside, what are potential benefits, for the US, of policy changes proposed by the tweet recognizing Golan annexation?

What are some good ways to treat frozen vegetables such that they behave like fresh vegetables when stir frying them?

Quoting Keynes in a lecture

Has any country ever had 2 former presidents in jail simultaneously?

It grows, but water kills it

Using substitution ciphers to generate new alphabets in a novel

Why Shazam when there is already Superman?

Why is this estimator biased?

Why should universal income be universal?

putting logo on same line but after title, latex



How to rewrite equation of hyperbola in standard form


Rewrite a west to east parabola in standard formStandard form of hyperbolaConic Section IntuitionWhat steps are involved to derive a functional expression for the revolving line of a cooling tower?Conic section General form to Standard form HyperbolaHyperbola Standard Form Denominator RelationshipHyperbola with Perpendicular AsymptotesRewrite hyperbola $Ax^2+Bxy+Dx+Ey+F=0$ into standard formHow to prove that the limit of this sequence is $400/pi$Can you multiply an integral by f(x)/f(x) where deg(f(x))>0?













2












$begingroup$


I was wondering about this question:



$$ 9 x ^ 2 -4y^2-72x=0 $$



What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?



Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.



Thank you ahead of time!










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    In short: complete the square
    $endgroup$
    – Minus One-Twelfth
    2 hours ago
















2












$begingroup$


I was wondering about this question:



$$ 9 x ^ 2 -4y^2-72x=0 $$



What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?



Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.



Thank you ahead of time!










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    In short: complete the square
    $endgroup$
    – Minus One-Twelfth
    2 hours ago














2












2








2





$begingroup$


I was wondering about this question:



$$ 9 x ^ 2 -4y^2-72x=0 $$



What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?



Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.



Thank you ahead of time!










share|cite|improve this question











$endgroup$




I was wondering about this question:



$$ 9 x ^ 2 -4y^2-72x=0 $$



What is the step-by-step process of writing such an equation which, in this case, has the graph of a hyperbola in standard form?



Please excuse me for my messy equation. As I am relatively new to Mathematics Stack Exchange, I do not know how to insert superscripts.



Thank you ahead of time!







calculus conic-sections






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Key Flex

8,63761233




8,63761233










asked 2 hours ago









JamesJames

555




555







  • 2




    $begingroup$
    In short: complete the square
    $endgroup$
    – Minus One-Twelfth
    2 hours ago













  • 2




    $begingroup$
    In short: complete the square
    $endgroup$
    – Minus One-Twelfth
    2 hours ago








2




2




$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 hours ago





$begingroup$
In short: complete the square
$endgroup$
– Minus One-Twelfth
2 hours ago











3 Answers
3






active

oldest

votes


















4












$begingroup$

Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.



$$9x^2-4y^2-72x=0$$
$$9(x^2-8x)-4y^2=0$$
$$(x^2-8x)-dfrac49y^2=0$$
$$dfrac14(x^2-8x)-dfrac19y^2=0$$
$$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
$$dfrac14(x-4)^2-dfrac19y^2=4$$
$$dfrac(x-4)^216-dfracy^236=1$$
$$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
    $endgroup$
    – James
    2 hours ago










  • $begingroup$
    @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
    $endgroup$
    – Key Flex
    1 hour ago


















2












$begingroup$

So we have $$9(x^2-8x)-4y^2=0$$



$$9(x^2-8x+colorred16-16)-4y^2=0$$



$$9(x-4)^2-144-4y^2=0$$



so $$9(x-4)^2-4y^2=144;;;;/:144$$



$$(x-4)^2over 16-y^2over 36=1$$






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
    $endgroup$
    – James
    2 hours ago


















1












$begingroup$

$$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
$$iff frac9144(x-4)^2-frac4144y^2=1$$
$$iff frac(x-4)^216-fracy^236=1$$
$$iff frac(x-4)^24^2-fracy^26^2=1$$






share|cite|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3158757%2fhow-to-rewrite-equation-of-hyperbola-in-standard-form%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.



    $$9x^2-4y^2-72x=0$$
    $$9(x^2-8x)-4y^2=0$$
    $$(x^2-8x)-dfrac49y^2=0$$
    $$dfrac14(x^2-8x)-dfrac19y^2=0$$
    $$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
    $$dfrac14(x-4)^2-dfrac19y^2=4$$
    $$dfrac(x-4)^216-dfracy^236=1$$
    $$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
      $endgroup$
      – James
      2 hours ago










    • $begingroup$
      @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
      $endgroup$
      – Key Flex
      1 hour ago















    4












    $begingroup$

    Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.



    $$9x^2-4y^2-72x=0$$
    $$9(x^2-8x)-4y^2=0$$
    $$(x^2-8x)-dfrac49y^2=0$$
    $$dfrac14(x^2-8x)-dfrac19y^2=0$$
    $$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
    $$dfrac14(x-4)^2-dfrac19y^2=4$$
    $$dfrac(x-4)^216-dfracy^236=1$$
    $$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
      $endgroup$
      – James
      2 hours ago










    • $begingroup$
      @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
      $endgroup$
      – Key Flex
      1 hour ago













    4












    4








    4





    $begingroup$

    Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.



    $$9x^2-4y^2-72x=0$$
    $$9(x^2-8x)-4y^2=0$$
    $$(x^2-8x)-dfrac49y^2=0$$
    $$dfrac14(x^2-8x)-dfrac19y^2=0$$
    $$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
    $$dfrac14(x-4)^2-dfrac19y^2=4$$
    $$dfrac(x-4)^216-dfracy^236=1$$
    $$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$






    share|cite|improve this answer









    $endgroup$



    Note that $dfrac(x-h)^2a^2-dfrac(y-k)^2b^2=1$ is the standard form of hyperbola.



    $$9x^2-4y^2-72x=0$$
    $$9(x^2-8x)-4y^2=0$$
    $$(x^2-8x)-dfrac49y^2=0$$
    $$dfrac14(x^2-8x)-dfrac19y^2=0$$
    $$dfrac14(x^2-8x+16)-dfrac19y^2=dfrac14(16)$$
    $$dfrac14(x-4)^2-dfrac19y^2=4$$
    $$dfrac(x-4)^216-dfracy^236=1$$
    $$dfrac(x-4)^24^2-dfrac(y-0)^26^2=1mbox is the required Hyperbola$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 2 hours ago









    Key FlexKey Flex

    8,63761233




    8,63761233











    • $begingroup$
      Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
      $endgroup$
      – James
      2 hours ago










    • $begingroup$
      @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
      $endgroup$
      – Key Flex
      1 hour ago
















    • $begingroup$
      Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
      $endgroup$
      – James
      2 hours ago










    • $begingroup$
      @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
      $endgroup$
      – Key Flex
      1 hour ago















    $begingroup$
    Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
    $endgroup$
    – James
    2 hours ago




    $begingroup$
    Is it not the equation before your answer that is in standard form since the 4^2 and 6^2 become 16 and 36. The equation with 16 & 36 as denominators.
    $endgroup$
    – James
    2 hours ago












    $begingroup$
    @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
    $endgroup$
    – Key Flex
    1 hour ago




    $begingroup$
    @James $dfrac(x-4)^24^2-dfrac(y-0)^26^2$ is in the standard form.
    $endgroup$
    – Key Flex
    1 hour ago











    2












    $begingroup$

    So we have $$9(x^2-8x)-4y^2=0$$



    $$9(x^2-8x+colorred16-16)-4y^2=0$$



    $$9(x-4)^2-144-4y^2=0$$



    so $$9(x-4)^2-4y^2=144;;;;/:144$$



    $$(x-4)^2over 16-y^2over 36=1$$






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
      $endgroup$
      – James
      2 hours ago















    2












    $begingroup$

    So we have $$9(x^2-8x)-4y^2=0$$



    $$9(x^2-8x+colorred16-16)-4y^2=0$$



    $$9(x-4)^2-144-4y^2=0$$



    so $$9(x-4)^2-4y^2=144;;;;/:144$$



    $$(x-4)^2over 16-y^2over 36=1$$






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
      $endgroup$
      – James
      2 hours ago













    2












    2








    2





    $begingroup$

    So we have $$9(x^2-8x)-4y^2=0$$



    $$9(x^2-8x+colorred16-16)-4y^2=0$$



    $$9(x-4)^2-144-4y^2=0$$



    so $$9(x-4)^2-4y^2=144;;;;/:144$$



    $$(x-4)^2over 16-y^2over 36=1$$






    share|cite|improve this answer









    $endgroup$



    So we have $$9(x^2-8x)-4y^2=0$$



    $$9(x^2-8x+colorred16-16)-4y^2=0$$



    $$9(x-4)^2-144-4y^2=0$$



    so $$9(x-4)^2-4y^2=144;;;;/:144$$



    $$(x-4)^2over 16-y^2over 36=1$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 2 hours ago









    Maria MazurMaria Mazur

    48k1260120




    48k1260120







    • 1




      $begingroup$
      I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
      $endgroup$
      – James
      2 hours ago












    • 1




      $begingroup$
      I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
      $endgroup$
      – James
      2 hours ago







    1




    1




    $begingroup$
    I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
    $endgroup$
    – James
    2 hours ago




    $begingroup$
    I believe the standard form of a hyperbola involves fractions. I believe the variables are placed as follows: ((x-h)/a^2)-((y-k)/b^2). I may have switched h and k.
    $endgroup$
    – James
    2 hours ago











    1












    $begingroup$

    $$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
    $$iff frac9144(x-4)^2-frac4144y^2=1$$
    $$iff frac(x-4)^216-fracy^236=1$$
    $$iff frac(x-4)^24^2-fracy^26^2=1$$






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      $$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
      $$iff frac9144(x-4)^2-frac4144y^2=1$$
      $$iff frac(x-4)^216-fracy^236=1$$
      $$iff frac(x-4)^24^2-fracy^26^2=1$$






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        $$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
        $$iff frac9144(x-4)^2-frac4144y^2=1$$
        $$iff frac(x-4)^216-fracy^236=1$$
        $$iff frac(x-4)^24^2-fracy^26^2=1$$






        share|cite|improve this answer









        $endgroup$



        $$9(x^2-8x)-4y^2=9(x-4)^2-144-4y^2=0$$
        $$iff frac9144(x-4)^2-frac4144y^2=1$$
        $$iff frac(x-4)^216-fracy^236=1$$
        $$iff frac(x-4)^24^2-fracy^26^2=1$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        HAMIDINE SOUMAREHAMIDINE SOUMARE

        1,20929




        1,20929



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3158757%2fhow-to-rewrite-equation-of-hyperbola-in-standard-form%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Андора Зьмест Гісторыя | Палітыка | Адміністрацыйны падзел | Геаграфія | Эканоміка | Дэмаграфія | Крыніцы | Вонкавыя спасылкі | Навігацыйнае мэню"CIA World Factbook entry: Andorra"."Andorra 2008, Departament d'estadística d'Andorra"Андорарр

            J. J. Abrams Índice Traxectoria | Filmografía | Premios | Notas | Véxase tamén | Menú de navegacióne"J.J. Abrams: Biography"Arquivado"'Star Trek' sequel on track"Arquivado"J.J. Abrams Producing Samurai Jack Movie"Arquivado"EXCLUSIVE: J.J. Abrams Goes Into Warp Speed with Star Trek and Beyond"Arquivado"David Semel To Direct Jonah Nolan/J.J. Abrams' CBS Pilot 'Person Of Interest'"Arquivado"Fox orders J.J. Abrams pilot 'Alcatraz'"ArquivadoJ. J. AbramsJ. J. AbramsWorldCat81800131p24091041000XX116709414031616ma11226833654496ID052246713376222X511412nm00091900000 0001 1772 5428no98124254ID0000002883100650044xx0054597000141374297344064w64f2mjx14255303415344

            Сэнт-Люіс Вонкавыя спасылкі | Навігацыйнае мэню38°37′38″ пн. ш. 90°11′52″ з. д. / 38.62722° пн. ш. 90.19778° з. д. / 38.62722; -90.1977838°37′38″ пн. ш. 90°11′52″ з. д. / 38.62722° пн. ш. 90.19778° з. д. / 38.62722; -90.19778stlouis-mo.govСэнт-ЛюісAnnual Estimates of the Resident Population for Incorporated Places – U.S. Census Bureau, Population Division