Eigenvalues of a real orthogonal matrix. The Next CEO of Stack OverflowDo real matrices always have real eigenvalues?Generalized eigenvalue problem; why do real eigenvalues exist?If $A$ is a real symmetric matrix, then $A$ has real eigenvalues.Block diagonal form of elements of SO(n)Eigenvectors and eigenvalues of Hessian matrixproperties of, 3x3 matrix, determinant 1, real eigenvaluesWhy eigenvalues of an orthogonal matrix made with QR decomposition include -1?Determine the matrix of the orthogonal projectionLet $A in mathbbC^n times n$ be hermitian. Prove all eigenvalues of $A$ are real…Existence condition of Real Eigenvalues for Non-Symmetric Real Matrix

Is there a way to save my career from absolute disaster?

Why does standard notation not preserve intervals (visually)

What happened in Rome, when the western empire "fell"?

How to avoid supervisors with prejudiced views?

Strength of face-nailed connection for stair steps

What was the first Unix version to run on a microcomputer?

What is meant by "large scale tonal organization?"

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Can I use the word "Senior" directly in German?

Do they change the text of the seder in Israel?

Calculator final project in Python

Method for adding error messages to a dictionary given a key

If the heap is zero-initialized for security, then why is the stack merely uninitialized?

When you upcast Blindness/Deafness, do all targets suffer the same effect?

What's the best way to handle refactoring a big file?

Poetry, calligrams and TikZ/PStricks challenge

RigExpert AA-35 - Interpreting The Information

WOW air has ceased operation, can I get my tickets refunded?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Is it my responsibility to learn a new technology in my own time my employer wants to implement?

Is micro rebar a better way to reinforce concrete than rebar?

Are police here, aren't itthey?

Purpose of level-shifter with same in and out voltages

Why do remote US companies require working in the US?



Eigenvalues of a real orthogonal matrix.



The Next CEO of Stack OverflowDo real matrices always have real eigenvalues?Generalized eigenvalue problem; why do real eigenvalues exist?If $A$ is a real symmetric matrix, then $A$ has real eigenvalues.Block diagonal form of elements of SO(n)Eigenvectors and eigenvalues of Hessian matrixproperties of, 3x3 matrix, determinant 1, real eigenvaluesWhy eigenvalues of an orthogonal matrix made with QR decomposition include -1?Determine the matrix of the orthogonal projectionLet $A in mathbbC^n times n$ be hermitian. Prove all eigenvalues of $A$ are real…Existence condition of Real Eigenvalues for Non-Symmetric Real Matrix










4












$begingroup$


Let $A$ be a real orthogonal matrix. Then $A^text T A = I.$ Let $lambda in Bbb C$ be an eigenvalue of $A$ corresponding to the eigenvector $X in Bbb C^n.$ Then we have





$$beginalign* X^text T A^text T A X = X^text T X. \ implies (AX)^text T AX & = X^text T X. \ implies (lambda X)^text T lambda X & = X^text T X. \ implies lambda^2 X^text T X & = X^text T X. \ implies (lambda^2 - 1) X^text T X & = 0. endalign*$$





Since $X$ is an eigenvector $X neq 0.$ Therefore $X^2 = X^text T X neq 0.$ Hence we must have $lambda^2 - 1 = 0$ i.e. $lambda^2 = 1.$ So $lambda = pm 1.$



So according to my argument above it follows that eigenvalues of a real orthogonal matrix are $pm 1.$ But I think that I am wrong as I know that the eigenvalues of an orthogonal matrix are unit modulus i.e. they lie on the unit circle.



What's going wrong in my argument above. Please help me in this regard.



Thank you very much for your valuable time.










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    Let $A$ be a real orthogonal matrix. Then $A^text T A = I.$ Let $lambda in Bbb C$ be an eigenvalue of $A$ corresponding to the eigenvector $X in Bbb C^n.$ Then we have





    $$beginalign* X^text T A^text T A X = X^text T X. \ implies (AX)^text T AX & = X^text T X. \ implies (lambda X)^text T lambda X & = X^text T X. \ implies lambda^2 X^text T X & = X^text T X. \ implies (lambda^2 - 1) X^text T X & = 0. endalign*$$





    Since $X$ is an eigenvector $X neq 0.$ Therefore $X^2 = X^text T X neq 0.$ Hence we must have $lambda^2 - 1 = 0$ i.e. $lambda^2 = 1.$ So $lambda = pm 1.$



    So according to my argument above it follows that eigenvalues of a real orthogonal matrix are $pm 1.$ But I think that I am wrong as I know that the eigenvalues of an orthogonal matrix are unit modulus i.e. they lie on the unit circle.



    What's going wrong in my argument above. Please help me in this regard.



    Thank you very much for your valuable time.










    share|cite|improve this question











    $endgroup$














      4












      4








      4


      0



      $begingroup$


      Let $A$ be a real orthogonal matrix. Then $A^text T A = I.$ Let $lambda in Bbb C$ be an eigenvalue of $A$ corresponding to the eigenvector $X in Bbb C^n.$ Then we have





      $$beginalign* X^text T A^text T A X = X^text T X. \ implies (AX)^text T AX & = X^text T X. \ implies (lambda X)^text T lambda X & = X^text T X. \ implies lambda^2 X^text T X & = X^text T X. \ implies (lambda^2 - 1) X^text T X & = 0. endalign*$$





      Since $X$ is an eigenvector $X neq 0.$ Therefore $X^2 = X^text T X neq 0.$ Hence we must have $lambda^2 - 1 = 0$ i.e. $lambda^2 = 1.$ So $lambda = pm 1.$



      So according to my argument above it follows that eigenvalues of a real orthogonal matrix are $pm 1.$ But I think that I am wrong as I know that the eigenvalues of an orthogonal matrix are unit modulus i.e. they lie on the unit circle.



      What's going wrong in my argument above. Please help me in this regard.



      Thank you very much for your valuable time.










      share|cite|improve this question











      $endgroup$




      Let $A$ be a real orthogonal matrix. Then $A^text T A = I.$ Let $lambda in Bbb C$ be an eigenvalue of $A$ corresponding to the eigenvector $X in Bbb C^n.$ Then we have





      $$beginalign* X^text T A^text T A X = X^text T X. \ implies (AX)^text T AX & = X^text T X. \ implies (lambda X)^text T lambda X & = X^text T X. \ implies lambda^2 X^text T X & = X^text T X. \ implies (lambda^2 - 1) X^text T X & = 0. endalign*$$





      Since $X$ is an eigenvector $X neq 0.$ Therefore $X^2 = X^text T X neq 0.$ Hence we must have $lambda^2 - 1 = 0$ i.e. $lambda^2 = 1.$ So $lambda = pm 1.$



      So according to my argument above it follows that eigenvalues of a real orthogonal matrix are $pm 1.$ But I think that I am wrong as I know that the eigenvalues of an orthogonal matrix are unit modulus i.e. they lie on the unit circle.



      What's going wrong in my argument above. Please help me in this regard.



      Thank you very much for your valuable time.







      linear-algebra eigenvalues-eigenvectors orthogonal-matrices






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 58 mins ago









      Yanko

      8,3052830




      8,3052830










      asked 7 hours ago









      math maniac.math maniac.

      1417




      1417




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          The mistake is your assumption that $X^TXne0$. Consider a simple example:
          $$A=pmatrix0&1\-1&0.$$
          It is orthogonal, and its eigenvalues are $pm i$. One eigenvector is
          $$X=pmatrix1\i.$$
          It satisfies $X^TX=0$.



          However, replacing $X^T$ in your argument by $X^H$ (complex conjugate
          of transpose) will give you the correct conclusion that $|lambda|^2=1$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            how can Euclidean norm of non zero vector be zero?
            $endgroup$
            – math maniac.
            7 hours ago






          • 2




            $begingroup$
            @mathmaniac. How can $1^2+i^2$ equal zero?
            $endgroup$
            – Lord Shark the Unknown
            6 hours ago










          • $begingroup$
            I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
            $endgroup$
            – math maniac.
            6 hours ago







          • 1




            $begingroup$
            Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
            $endgroup$
            – math maniac.
            6 hours ago












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169070%2feigenvalues-of-a-real-orthogonal-matrix%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          The mistake is your assumption that $X^TXne0$. Consider a simple example:
          $$A=pmatrix0&1\-1&0.$$
          It is orthogonal, and its eigenvalues are $pm i$. One eigenvector is
          $$X=pmatrix1\i.$$
          It satisfies $X^TX=0$.



          However, replacing $X^T$ in your argument by $X^H$ (complex conjugate
          of transpose) will give you the correct conclusion that $|lambda|^2=1$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            how can Euclidean norm of non zero vector be zero?
            $endgroup$
            – math maniac.
            7 hours ago






          • 2




            $begingroup$
            @mathmaniac. How can $1^2+i^2$ equal zero?
            $endgroup$
            – Lord Shark the Unknown
            6 hours ago










          • $begingroup$
            I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
            $endgroup$
            – math maniac.
            6 hours ago







          • 1




            $begingroup$
            Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
            $endgroup$
            – math maniac.
            6 hours ago
















          4












          $begingroup$

          The mistake is your assumption that $X^TXne0$. Consider a simple example:
          $$A=pmatrix0&1\-1&0.$$
          It is orthogonal, and its eigenvalues are $pm i$. One eigenvector is
          $$X=pmatrix1\i.$$
          It satisfies $X^TX=0$.



          However, replacing $X^T$ in your argument by $X^H$ (complex conjugate
          of transpose) will give you the correct conclusion that $|lambda|^2=1$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            how can Euclidean norm of non zero vector be zero?
            $endgroup$
            – math maniac.
            7 hours ago






          • 2




            $begingroup$
            @mathmaniac. How can $1^2+i^2$ equal zero?
            $endgroup$
            – Lord Shark the Unknown
            6 hours ago










          • $begingroup$
            I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
            $endgroup$
            – math maniac.
            6 hours ago







          • 1




            $begingroup$
            Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
            $endgroup$
            – math maniac.
            6 hours ago














          4












          4








          4





          $begingroup$

          The mistake is your assumption that $X^TXne0$. Consider a simple example:
          $$A=pmatrix0&1\-1&0.$$
          It is orthogonal, and its eigenvalues are $pm i$. One eigenvector is
          $$X=pmatrix1\i.$$
          It satisfies $X^TX=0$.



          However, replacing $X^T$ in your argument by $X^H$ (complex conjugate
          of transpose) will give you the correct conclusion that $|lambda|^2=1$.






          share|cite|improve this answer









          $endgroup$



          The mistake is your assumption that $X^TXne0$. Consider a simple example:
          $$A=pmatrix0&1\-1&0.$$
          It is orthogonal, and its eigenvalues are $pm i$. One eigenvector is
          $$X=pmatrix1\i.$$
          It satisfies $X^TX=0$.



          However, replacing $X^T$ in your argument by $X^H$ (complex conjugate
          of transpose) will give you the correct conclusion that $|lambda|^2=1$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 7 hours ago









          Lord Shark the UnknownLord Shark the Unknown

          107k1162135




          107k1162135











          • $begingroup$
            how can Euclidean norm of non zero vector be zero?
            $endgroup$
            – math maniac.
            7 hours ago






          • 2




            $begingroup$
            @mathmaniac. How can $1^2+i^2$ equal zero?
            $endgroup$
            – Lord Shark the Unknown
            6 hours ago










          • $begingroup$
            I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
            $endgroup$
            – math maniac.
            6 hours ago







          • 1




            $begingroup$
            Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
            $endgroup$
            – math maniac.
            6 hours ago

















          • $begingroup$
            how can Euclidean norm of non zero vector be zero?
            $endgroup$
            – math maniac.
            7 hours ago






          • 2




            $begingroup$
            @mathmaniac. How can $1^2+i^2$ equal zero?
            $endgroup$
            – Lord Shark the Unknown
            6 hours ago










          • $begingroup$
            I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
            $endgroup$
            – math maniac.
            6 hours ago







          • 1




            $begingroup$
            Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
            $endgroup$
            – math maniac.
            6 hours ago
















          $begingroup$
          how can Euclidean norm of non zero vector be zero?
          $endgroup$
          – math maniac.
          7 hours ago




          $begingroup$
          how can Euclidean norm of non zero vector be zero?
          $endgroup$
          – math maniac.
          7 hours ago




          2




          2




          $begingroup$
          @mathmaniac. How can $1^2+i^2$ equal zero?
          $endgroup$
          – Lord Shark the Unknown
          6 hours ago




          $begingroup$
          @mathmaniac. How can $1^2+i^2$ equal zero?
          $endgroup$
          – Lord Shark the Unknown
          6 hours ago












          $begingroup$
          I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
          $endgroup$
          – math maniac.
          6 hours ago





          $begingroup$
          I think the Euclidean norm of $X in Bbb C^n$ is $sqrt X^text T overline X text or sqrt overline X^text T X,$ not $sqrt X^text T X.$ Am I right?
          $endgroup$
          – math maniac.
          6 hours ago





          1




          1




          $begingroup$
          Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
          $endgroup$
          – math maniac.
          6 hours ago





          $begingroup$
          Which is same as $sqrt X^text HX,$ as you have rightly pointed out.
          $endgroup$
          – math maniac.
          6 hours ago


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169070%2feigenvalues-of-a-real-orthogonal-matrix%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Андора Зьмест Гісторыя | Палітыка | Адміністрацыйны падзел | Геаграфія | Эканоміка | Дэмаграфія | Крыніцы | Вонкавыя спасылкі | Навігацыйнае мэню"CIA World Factbook entry: Andorra"."Andorra 2008, Departament d'estadística d'Andorra"Андорарр

          J. J. Abrams Índice Traxectoria | Filmografía | Premios | Notas | Véxase tamén | Menú de navegacióne"J.J. Abrams: Biography"Arquivado"'Star Trek' sequel on track"Arquivado"J.J. Abrams Producing Samurai Jack Movie"Arquivado"EXCLUSIVE: J.J. Abrams Goes Into Warp Speed with Star Trek and Beyond"Arquivado"David Semel To Direct Jonah Nolan/J.J. Abrams' CBS Pilot 'Person Of Interest'"Arquivado"Fox orders J.J. Abrams pilot 'Alcatraz'"ArquivadoJ. J. AbramsJ. J. AbramsWorldCat81800131p24091041000XX116709414031616ma11226833654496ID052246713376222X511412nm00091900000 0001 1772 5428no98124254ID0000002883100650044xx0054597000141374297344064w64f2mjx14255303415344

          Сэнт-Люіс Вонкавыя спасылкі | Навігацыйнае мэню38°37′38″ пн. ш. 90°11′52″ з. д. / 38.62722° пн. ш. 90.19778° з. д. / 38.62722; -90.1977838°37′38″ пн. ш. 90°11′52″ з. д. / 38.62722° пн. ш. 90.19778° з. д. / 38.62722; -90.19778stlouis-mo.govСэнт-ЛюісAnnual Estimates of the Resident Population for Incorporated Places – U.S. Census Bureau, Population Division