Finding NDSolve method detailsHow to find out which method Mathematica selected?inspecting step size and order of $tt NDSolve$What does MaxStepFraction do?How does Mathematica resolve symbolic systems of inequalities?NDSolve and strange “nonlinear coefficients problem”The idea behind Stiffness switching method with NDsolveProblems when solving a nonlinear PDE system with NDSolveSingularity treatment in a simple problemPDEs : automatic method choice : TensorProductGrid or FiniteElement?NDSolve struggling with tricky boundary conditionsNDSolve and memory usedDetails of NDSolve calling LSODA

Closed-form expression for certain product

How could a planet have erratic days?

Is it improper etiquette to ask your opponent what his/her rating is before the game?

Creature in Shazam mid-credits scene?

Has any country ever had 2 former presidents in jail simultaneously?

If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?

Why should universal income be universal?

Is there a working SACD iso player for Ubuntu?

Is this toilet slogan correct usage of the English language?

When a Cleric spontaneously casts a Cure Light Wounds spell, will a Pearl of Power recover the original spell or Cure Light Wounds?

Are the IPv6 address space and IPv4 address space completely disjoint?

Energy measurement from position eigenstate

Create all possible words using a set or letters

Where does the bonus feat in the cleric starting package come from?

Can someone explain how this makes sense electrically?

Count the occurrence of each unique word in the file

Lowest total scrabble score

Delivering sarcasm

Why do we read the Megillah by night and by day?

How should I respond when I lied about my education and the company finds out through background check?

Should I outline or discovery write my stories?

Why is so much work done on numerical verification of the Riemann Hypothesis?

250 Floor Tower

Does the expansion of the universe explain why the universe doesn't collapse?



Finding NDSolve method details


How to find out which method Mathematica selected?inspecting step size and order of $tt NDSolve$What does MaxStepFraction do?How does Mathematica resolve symbolic systems of inequalities?NDSolve and strange “nonlinear coefficients problem”The idea behind Stiffness switching method with NDsolveProblems when solving a nonlinear PDE system with NDSolveSingularity treatment in a simple problemPDEs : automatic method choice : TensorProductGrid or FiniteElement?NDSolve struggling with tricky boundary conditionsNDSolve and memory usedDetails of NDSolve calling LSODA













2












$begingroup$


I have eqs about the NDSolve, I know this code given the solving automatically.



How can I find out what method is used behind the scenes? How can I gauge the reliability level, find how many iterations have been used, the order of method. How can I estimate the error?



I found hints on this site, but I still do not fully understand.



It is impossible to say NDSolve has automatically solution for publishing paper?



I used this code related to my system:



r = 0.431201; β = 2.99 *10^-6; σ = 0.7; δ = 0.57;
m = 0.3, η = 0.1, μ = 0.1, ρ = 0.3;


S = N1'[t] == r N1[t] (1 - β N1[t]) - η N1[t] I1[t],
I1'[t] == σ + (ρ N1[t] I1[t])/( m + N1[t]) - δ I1[t] - μ N1[t] I1[t];

c = N1[0] == 1, I1[0] == 1.22;

Select[Flatten[
Trace[
NDSolve[S, c, N1, I1, t, 0, 30],
TraceInternal -> True]],
!FreeQ[#, Method | NDSolve`MethodData] &]


but I don't understand the output.










share|improve this question











$endgroup$







  • 2




    $begingroup$
    Partial duplicate: mathematica.stackexchange.com/questions/145/…
    $endgroup$
    – Michael E2
    5 hours ago






  • 1




    $begingroup$
    Another partial duplicate: mathematica.stackexchange.com/questions/102704/…
    $endgroup$
    – Michael E2
    4 hours ago






  • 1




    $begingroup$
    You say you don't understand some technique or other, nor the output of your Trace[] command. But the first is a very general statement about things already explained and the second is about a command that no one else can reproduce
    $endgroup$
    – Michael E2
    4 hours ago






  • 1




    $begingroup$
    "It is impossible to say NDSolve has automatically solution for publishing paper. " Simply saying "I've used NDSolve function of software Mathematica" is enough in many cases, AFAIK.
    $endgroup$
    – xzczd
    2 hours ago






  • 2




    $begingroup$
    Well, if the reviewer insists on such stuff, given that your system isn't that difficult, a possible workaround at this point is to choose a primary method like classical RK4 to solve the problem. The way to choose classical RK4 in NDSolve can be found in tutorial/NDSolveExplicitRungeKutta#1456351317, then you just need to set Method -> "ExplicitRungeKutta", "DifferenceOrder" -> 4, "Coefficients" -> ClassicalRungeKuttaCoefficients, StartingStepSize -> 1/20000, MaxSteps -> Infinity in NDSolve. The solving process is slower but gives the same result as given by default.
    $endgroup$
    – xzczd
    2 hours ago















2












$begingroup$


I have eqs about the NDSolve, I know this code given the solving automatically.



How can I find out what method is used behind the scenes? How can I gauge the reliability level, find how many iterations have been used, the order of method. How can I estimate the error?



I found hints on this site, but I still do not fully understand.



It is impossible to say NDSolve has automatically solution for publishing paper?



I used this code related to my system:



r = 0.431201; β = 2.99 *10^-6; σ = 0.7; δ = 0.57;
m = 0.3, η = 0.1, μ = 0.1, ρ = 0.3;


S = N1'[t] == r N1[t] (1 - β N1[t]) - η N1[t] I1[t],
I1'[t] == σ + (ρ N1[t] I1[t])/( m + N1[t]) - δ I1[t] - μ N1[t] I1[t];

c = N1[0] == 1, I1[0] == 1.22;

Select[Flatten[
Trace[
NDSolve[S, c, N1, I1, t, 0, 30],
TraceInternal -> True]],
!FreeQ[#, Method | NDSolve`MethodData] &]


but I don't understand the output.










share|improve this question











$endgroup$







  • 2




    $begingroup$
    Partial duplicate: mathematica.stackexchange.com/questions/145/…
    $endgroup$
    – Michael E2
    5 hours ago






  • 1




    $begingroup$
    Another partial duplicate: mathematica.stackexchange.com/questions/102704/…
    $endgroup$
    – Michael E2
    4 hours ago






  • 1




    $begingroup$
    You say you don't understand some technique or other, nor the output of your Trace[] command. But the first is a very general statement about things already explained and the second is about a command that no one else can reproduce
    $endgroup$
    – Michael E2
    4 hours ago






  • 1




    $begingroup$
    "It is impossible to say NDSolve has automatically solution for publishing paper. " Simply saying "I've used NDSolve function of software Mathematica" is enough in many cases, AFAIK.
    $endgroup$
    – xzczd
    2 hours ago






  • 2




    $begingroup$
    Well, if the reviewer insists on such stuff, given that your system isn't that difficult, a possible workaround at this point is to choose a primary method like classical RK4 to solve the problem. The way to choose classical RK4 in NDSolve can be found in tutorial/NDSolveExplicitRungeKutta#1456351317, then you just need to set Method -> "ExplicitRungeKutta", "DifferenceOrder" -> 4, "Coefficients" -> ClassicalRungeKuttaCoefficients, StartingStepSize -> 1/20000, MaxSteps -> Infinity in NDSolve. The solving process is slower but gives the same result as given by default.
    $endgroup$
    – xzczd
    2 hours ago













2












2








2





$begingroup$


I have eqs about the NDSolve, I know this code given the solving automatically.



How can I find out what method is used behind the scenes? How can I gauge the reliability level, find how many iterations have been used, the order of method. How can I estimate the error?



I found hints on this site, but I still do not fully understand.



It is impossible to say NDSolve has automatically solution for publishing paper?



I used this code related to my system:



r = 0.431201; β = 2.99 *10^-6; σ = 0.7; δ = 0.57;
m = 0.3, η = 0.1, μ = 0.1, ρ = 0.3;


S = N1'[t] == r N1[t] (1 - β N1[t]) - η N1[t] I1[t],
I1'[t] == σ + (ρ N1[t] I1[t])/( m + N1[t]) - δ I1[t] - μ N1[t] I1[t];

c = N1[0] == 1, I1[0] == 1.22;

Select[Flatten[
Trace[
NDSolve[S, c, N1, I1, t, 0, 30],
TraceInternal -> True]],
!FreeQ[#, Method | NDSolve`MethodData] &]


but I don't understand the output.










share|improve this question











$endgroup$




I have eqs about the NDSolve, I know this code given the solving automatically.



How can I find out what method is used behind the scenes? How can I gauge the reliability level, find how many iterations have been used, the order of method. How can I estimate the error?



I found hints on this site, but I still do not fully understand.



It is impossible to say NDSolve has automatically solution for publishing paper?



I used this code related to my system:



r = 0.431201; β = 2.99 *10^-6; σ = 0.7; δ = 0.57;
m = 0.3, η = 0.1, μ = 0.1, ρ = 0.3;


S = N1'[t] == r N1[t] (1 - β N1[t]) - η N1[t] I1[t],
I1'[t] == σ + (ρ N1[t] I1[t])/( m + N1[t]) - δ I1[t] - μ N1[t] I1[t];

c = N1[0] == 1, I1[0] == 1.22;

Select[Flatten[
Trace[
NDSolve[S, c, N1, I1, t, 0, 30],
TraceInternal -> True]],
!FreeQ[#, Method | NDSolve`MethodData] &]


but I don't understand the output.







differential-equations implementation-details






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 hours ago









xzczd

27.4k573254




27.4k573254










asked 5 hours ago









sana alharbisana alharbi

356




356







  • 2




    $begingroup$
    Partial duplicate: mathematica.stackexchange.com/questions/145/…
    $endgroup$
    – Michael E2
    5 hours ago






  • 1




    $begingroup$
    Another partial duplicate: mathematica.stackexchange.com/questions/102704/…
    $endgroup$
    – Michael E2
    4 hours ago






  • 1




    $begingroup$
    You say you don't understand some technique or other, nor the output of your Trace[] command. But the first is a very general statement about things already explained and the second is about a command that no one else can reproduce
    $endgroup$
    – Michael E2
    4 hours ago






  • 1




    $begingroup$
    "It is impossible to say NDSolve has automatically solution for publishing paper. " Simply saying "I've used NDSolve function of software Mathematica" is enough in many cases, AFAIK.
    $endgroup$
    – xzczd
    2 hours ago






  • 2




    $begingroup$
    Well, if the reviewer insists on such stuff, given that your system isn't that difficult, a possible workaround at this point is to choose a primary method like classical RK4 to solve the problem. The way to choose classical RK4 in NDSolve can be found in tutorial/NDSolveExplicitRungeKutta#1456351317, then you just need to set Method -> "ExplicitRungeKutta", "DifferenceOrder" -> 4, "Coefficients" -> ClassicalRungeKuttaCoefficients, StartingStepSize -> 1/20000, MaxSteps -> Infinity in NDSolve. The solving process is slower but gives the same result as given by default.
    $endgroup$
    – xzczd
    2 hours ago












  • 2




    $begingroup$
    Partial duplicate: mathematica.stackexchange.com/questions/145/…
    $endgroup$
    – Michael E2
    5 hours ago






  • 1




    $begingroup$
    Another partial duplicate: mathematica.stackexchange.com/questions/102704/…
    $endgroup$
    – Michael E2
    4 hours ago






  • 1




    $begingroup$
    You say you don't understand some technique or other, nor the output of your Trace[] command. But the first is a very general statement about things already explained and the second is about a command that no one else can reproduce
    $endgroup$
    – Michael E2
    4 hours ago






  • 1




    $begingroup$
    "It is impossible to say NDSolve has automatically solution for publishing paper. " Simply saying "I've used NDSolve function of software Mathematica" is enough in many cases, AFAIK.
    $endgroup$
    – xzczd
    2 hours ago






  • 2




    $begingroup$
    Well, if the reviewer insists on such stuff, given that your system isn't that difficult, a possible workaround at this point is to choose a primary method like classical RK4 to solve the problem. The way to choose classical RK4 in NDSolve can be found in tutorial/NDSolveExplicitRungeKutta#1456351317, then you just need to set Method -> "ExplicitRungeKutta", "DifferenceOrder" -> 4, "Coefficients" -> ClassicalRungeKuttaCoefficients, StartingStepSize -> 1/20000, MaxSteps -> Infinity in NDSolve. The solving process is slower but gives the same result as given by default.
    $endgroup$
    – xzczd
    2 hours ago







2




2




$begingroup$
Partial duplicate: mathematica.stackexchange.com/questions/145/…
$endgroup$
– Michael E2
5 hours ago




$begingroup$
Partial duplicate: mathematica.stackexchange.com/questions/145/…
$endgroup$
– Michael E2
5 hours ago




1




1




$begingroup$
Another partial duplicate: mathematica.stackexchange.com/questions/102704/…
$endgroup$
– Michael E2
4 hours ago




$begingroup$
Another partial duplicate: mathematica.stackexchange.com/questions/102704/…
$endgroup$
– Michael E2
4 hours ago




1




1




$begingroup$
You say you don't understand some technique or other, nor the output of your Trace[] command. But the first is a very general statement about things already explained and the second is about a command that no one else can reproduce
$endgroup$
– Michael E2
4 hours ago




$begingroup$
You say you don't understand some technique or other, nor the output of your Trace[] command. But the first is a very general statement about things already explained and the second is about a command that no one else can reproduce
$endgroup$
– Michael E2
4 hours ago




1




1




$begingroup$
"It is impossible to say NDSolve has automatically solution for publishing paper. " Simply saying "I've used NDSolve function of software Mathematica" is enough in many cases, AFAIK.
$endgroup$
– xzczd
2 hours ago




$begingroup$
"It is impossible to say NDSolve has automatically solution for publishing paper. " Simply saying "I've used NDSolve function of software Mathematica" is enough in many cases, AFAIK.
$endgroup$
– xzczd
2 hours ago




2




2




$begingroup$
Well, if the reviewer insists on such stuff, given that your system isn't that difficult, a possible workaround at this point is to choose a primary method like classical RK4 to solve the problem. The way to choose classical RK4 in NDSolve can be found in tutorial/NDSolveExplicitRungeKutta#1456351317, then you just need to set Method -> "ExplicitRungeKutta", "DifferenceOrder" -> 4, "Coefficients" -> ClassicalRungeKuttaCoefficients, StartingStepSize -> 1/20000, MaxSteps -> Infinity in NDSolve. The solving process is slower but gives the same result as given by default.
$endgroup$
– xzczd
2 hours ago




$begingroup$
Well, if the reviewer insists on such stuff, given that your system isn't that difficult, a possible workaround at this point is to choose a primary method like classical RK4 to solve the problem. The way to choose classical RK4 in NDSolve can be found in tutorial/NDSolveExplicitRungeKutta#1456351317, then you just need to set Method -> "ExplicitRungeKutta", "DifferenceOrder" -> 4, "Coefficients" -> ClassicalRungeKuttaCoefficients, StartingStepSize -> 1/20000, MaxSteps -> Infinity in NDSolve. The solving process is slower but gives the same result as given by default.
$endgroup$
– xzczd
2 hours ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

Comment



In response to your question, you already got very valuable comments. I will just try to comment on




How can I estimate the error?




For this I am going to plot residual error at steps and time, which will show the reliability and accuracy of NDSolve,



r = 0.431201; [Beta] = 2.99*10^-6; [Sigma] = 0.7; [Delta] = 0.57;
m = 0.3; [Eta] = 0.1; [Mu] = 0.1; [Rho] = 0.3;

ode = N1'[t] == r N1[t] (1 - [Beta] N1[t]) - [Eta] N1[t] I1[t],
I1'[t] == [Sigma] + ([Rho] N1[t] I1[t])/(m + N1[t]) - [Delta] I1[t] - [Mu] N1[t] I1[t];

bcs = N1[0] == 1, I1[0] == 1.22;

residuals = ode /. Equal -> Subtract;

s = NDSolve[ode, bcs, N1, I1, t, 20, InterpolationOrder -> All];

N1["Coordinates"] /. s;

residuals /. t -> N1["Coordinates"] /. s;

ListPlot[Abs[Flatten /@ (residuals /. t -> N1["Coordinates"] /. s)], Frame -> True]


enter image description here



With[data = Table[t, Abs@residuals[[1]] /. s, t, N1["Coordinates"] /. s // Flatten], 
ListLogPlot[data, Frame -> True, PlotRange -> All]]


enter image description here



Note: I adopted the above from this website but unable to find the link.






share|improve this answer









$endgroup$












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "387"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193858%2ffinding-ndsolve-method-details%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Comment



    In response to your question, you already got very valuable comments. I will just try to comment on




    How can I estimate the error?




    For this I am going to plot residual error at steps and time, which will show the reliability and accuracy of NDSolve,



    r = 0.431201; [Beta] = 2.99*10^-6; [Sigma] = 0.7; [Delta] = 0.57;
    m = 0.3; [Eta] = 0.1; [Mu] = 0.1; [Rho] = 0.3;

    ode = N1'[t] == r N1[t] (1 - [Beta] N1[t]) - [Eta] N1[t] I1[t],
    I1'[t] == [Sigma] + ([Rho] N1[t] I1[t])/(m + N1[t]) - [Delta] I1[t] - [Mu] N1[t] I1[t];

    bcs = N1[0] == 1, I1[0] == 1.22;

    residuals = ode /. Equal -> Subtract;

    s = NDSolve[ode, bcs, N1, I1, t, 20, InterpolationOrder -> All];

    N1["Coordinates"] /. s;

    residuals /. t -> N1["Coordinates"] /. s;

    ListPlot[Abs[Flatten /@ (residuals /. t -> N1["Coordinates"] /. s)], Frame -> True]


    enter image description here



    With[data = Table[t, Abs@residuals[[1]] /. s, t, N1["Coordinates"] /. s // Flatten], 
    ListLogPlot[data, Frame -> True, PlotRange -> All]]


    enter image description here



    Note: I adopted the above from this website but unable to find the link.






    share|improve this answer









    $endgroup$

















      3












      $begingroup$

      Comment



      In response to your question, you already got very valuable comments. I will just try to comment on




      How can I estimate the error?




      For this I am going to plot residual error at steps and time, which will show the reliability and accuracy of NDSolve,



      r = 0.431201; [Beta] = 2.99*10^-6; [Sigma] = 0.7; [Delta] = 0.57;
      m = 0.3; [Eta] = 0.1; [Mu] = 0.1; [Rho] = 0.3;

      ode = N1'[t] == r N1[t] (1 - [Beta] N1[t]) - [Eta] N1[t] I1[t],
      I1'[t] == [Sigma] + ([Rho] N1[t] I1[t])/(m + N1[t]) - [Delta] I1[t] - [Mu] N1[t] I1[t];

      bcs = N1[0] == 1, I1[0] == 1.22;

      residuals = ode /. Equal -> Subtract;

      s = NDSolve[ode, bcs, N1, I1, t, 20, InterpolationOrder -> All];

      N1["Coordinates"] /. s;

      residuals /. t -> N1["Coordinates"] /. s;

      ListPlot[Abs[Flatten /@ (residuals /. t -> N1["Coordinates"] /. s)], Frame -> True]


      enter image description here



      With[data = Table[t, Abs@residuals[[1]] /. s, t, N1["Coordinates"] /. s // Flatten], 
      ListLogPlot[data, Frame -> True, PlotRange -> All]]


      enter image description here



      Note: I adopted the above from this website but unable to find the link.






      share|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        Comment



        In response to your question, you already got very valuable comments. I will just try to comment on




        How can I estimate the error?




        For this I am going to plot residual error at steps and time, which will show the reliability and accuracy of NDSolve,



        r = 0.431201; [Beta] = 2.99*10^-6; [Sigma] = 0.7; [Delta] = 0.57;
        m = 0.3; [Eta] = 0.1; [Mu] = 0.1; [Rho] = 0.3;

        ode = N1'[t] == r N1[t] (1 - [Beta] N1[t]) - [Eta] N1[t] I1[t],
        I1'[t] == [Sigma] + ([Rho] N1[t] I1[t])/(m + N1[t]) - [Delta] I1[t] - [Mu] N1[t] I1[t];

        bcs = N1[0] == 1, I1[0] == 1.22;

        residuals = ode /. Equal -> Subtract;

        s = NDSolve[ode, bcs, N1, I1, t, 20, InterpolationOrder -> All];

        N1["Coordinates"] /. s;

        residuals /. t -> N1["Coordinates"] /. s;

        ListPlot[Abs[Flatten /@ (residuals /. t -> N1["Coordinates"] /. s)], Frame -> True]


        enter image description here



        With[data = Table[t, Abs@residuals[[1]] /. s, t, N1["Coordinates"] /. s // Flatten], 
        ListLogPlot[data, Frame -> True, PlotRange -> All]]


        enter image description here



        Note: I adopted the above from this website but unable to find the link.






        share|improve this answer









        $endgroup$



        Comment



        In response to your question, you already got very valuable comments. I will just try to comment on




        How can I estimate the error?




        For this I am going to plot residual error at steps and time, which will show the reliability and accuracy of NDSolve,



        r = 0.431201; [Beta] = 2.99*10^-6; [Sigma] = 0.7; [Delta] = 0.57;
        m = 0.3; [Eta] = 0.1; [Mu] = 0.1; [Rho] = 0.3;

        ode = N1'[t] == r N1[t] (1 - [Beta] N1[t]) - [Eta] N1[t] I1[t],
        I1'[t] == [Sigma] + ([Rho] N1[t] I1[t])/(m + N1[t]) - [Delta] I1[t] - [Mu] N1[t] I1[t];

        bcs = N1[0] == 1, I1[0] == 1.22;

        residuals = ode /. Equal -> Subtract;

        s = NDSolve[ode, bcs, N1, I1, t, 20, InterpolationOrder -> All];

        N1["Coordinates"] /. s;

        residuals /. t -> N1["Coordinates"] /. s;

        ListPlot[Abs[Flatten /@ (residuals /. t -> N1["Coordinates"] /. s)], Frame -> True]


        enter image description here



        With[data = Table[t, Abs@residuals[[1]] /. s, t, N1["Coordinates"] /. s // Flatten], 
        ListLogPlot[data, Frame -> True, PlotRange -> All]]


        enter image description here



        Note: I adopted the above from this website but unable to find the link.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 1 hour ago









        zhkzhk

        10k11433




        10k11433



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193858%2ffinding-ndsolve-method-details%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Андора Зьмест Гісторыя | Палітыка | Адміністрацыйны падзел | Геаграфія | Эканоміка | Дэмаграфія | Крыніцы | Вонкавыя спасылкі | Навігацыйнае мэню"CIA World Factbook entry: Andorra"."Andorra 2008, Departament d'estadística d'Andorra"Андорарр

            Інфармацыя пра «Том Ўэйтс» Асноўныя зьвесткіАбарона старонкіГісторыя рэдагаваньняўУласьцівасьці старонкіНавігацыйнае мэню